Approximate Solutions for Galvanostatic Discharge of Spherical Particles I. Constant Diffusion Coefficient

نویسندگان

  • Venkat R. Subramanian
  • James A. Ritter
  • Ralph E. White
چکیده

Approximate models are developed, based on second, fourth, and sixth order polynomials, that describe the concentration profile of an electrochemically active species in a spherical electrode particle. Analytical expressions are obtained that describe the way the concentration profiles, surface concentrations, and electrode utilization change during the galvanostatic discharge of an electrode particle. Based on a comparison with an exact analytical model over a wide range of dimensionless current densities, all three approximate models performed extremely well in predicting these quantities. Quantitative criterion for the validity of these models is also developed and shows that the sixth order, four parameter approximate model is the best. These approximate models, or similarly developed models, should find extensive use in simplifying the modeling of complex electrochemical systems without sacrificing much accuracy as shown in Part II of this series for the concentration-dependent diffusion coefficient case. © 2001 The Electrochemical Society. @DOI: 10.1149/1.1409397# All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Diffusion Coefficient Using Dynamic Light Scattering Technique

In this work, the Z-average, effective, apparent diffusion coefficients and their poly-dispersity indexes were investigated for dilute poly-disperse homogeneous spherical particles in dispersion where the Rayleigh-Gans-Debye approximation is valid. The results reveal that the values of the apparent and effective diffusion coefficients at a scattering angle investigated are consistent and the di...

متن کامل

Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.

Carbon-coated olivine NaFePO(4) (C-NaFePO(4)) spherical particles with a uniform diameter of ∼80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO(4) (C-LiFePO(4)), which is synthesized by a solvothermal method. The C-NaFePO(4) electrodes are identical (particle size, particle size distribution, surface coating, and active material...

متن کامل

Stability Ratios for Doublet Formation and for Deposition of Colloidal Particles with Arbitrary Interaction Potentials : An Analytical Approximation

where h is the distance between the surfaces of the particles. The first contribution UW is due to van der Waals attraction which can be approximated for Spherical particles as Uw(h) = -Aa/l2h for h << a , where a is the particle radius and A the Hamaker constant. The second contribution is the electrostatic potential U(h) which depends on parameters such as the charge 2 and the size of the par...

متن کامل

AN ANALYTICAL SOLUTION FOR DIFFUSION AND NONLINEAR UPTAKE OF OXYGEN IN THE RETINA

A simple mathematical model of steady state  oxygen distribution subject to diffusive transport and non- linear uptake in a retinal cylinder has been developed. The approximate analytical solution to a reaction- diffusion equation are obtained by using series expansions. The computational results for the scaled variables are presented through graphs. The effect of the important parameters (1) d...

متن کامل

Diffusive Dynamics of Interacting Particles in Equilibrium and under Hydrodynamic Sedimentation

Diffusive motion of particles plays an important role in many phenomena in surface physics, for example in chemical reactions, surface growth, and spreading. Diffusive motion can be observed in many different systems. In this thesis we study diffusion and dynamics in two fundamentally different kinds of systems: (i) in Brownian surface systems, and (ii) in a nonBrownian system of sedimenting pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001